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By a joint use of theory and analog simulation the low-•ction regime of the 
Duffing oscillator is explored. In the weak-temperature case it is shown that the 
low-friction regime, in turn, must be divided in two well-distinct subregimes. In 
the former one, characterized by the friction 7 ranging from 20)o (e)0 is the har- 
monic frequency) up to a lower bound 7r, the method of statistical linearization 
applies and a continued fraction procedure (CFP) generated by the Zwan- 
zig-Mori projection techniques is shown to provide correct information for both 
the renormalized frequency of the oscillator and the corresponding line shape. 
The latter subregime, characterized by the friction 7 ranging from , /=0 to 
7 =~ is fraught with the complete breakdown of the statistical linearization 
method. The CFP is shown to provide an incorrect picture of the line shape 
while suggesting a novel mean field approximation which is then proven 
analytically via an alternative method of calculation. This method consists of 
expressing the system in a form reminiscent of the model of Kubo's stochastic 
oscillator. By using this alternative approach we are in a position to account for 
the residual linewidth which is shown by the analog experiment to survive for 
7 ~ 0 .  

KEY WORDS: Nonlinear stochastic oscillator; Zwanzing-Mori projection 
procedure; multiplicative stochastic oscillator; renormalized frequency; 
statistical linearization. 

1, I N T R O D U C T I O N  

T h e  Duf f ing  osc i l l a to r  is the  s imples t  m o d e l  for  n o n l i n e a r  sys tems  subjec t  

to r a n d o m  in te rac t ions .  Th i s  exp la ins  w h y  in the  recen t  pas t  a la rge  n u m -  
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ber of articles have appeared (1 1~) discussing approximate solutions to this 
anharmonic stochastic oscillator. This model is described by 

(1.1) 
/) ~-  - -  (O)2X -~ ]~X 3) - -  ~/) -1- f(t) 

This means that a Brownian particle with space coordinate x and velocity v 
moves under the influence of an external anharmonic potential, a friction 
term, and a stochastic force f(t),  which is assumed to be Gaussian and 6 
correlated, i.e., 

( f ( t ) )  -~ O, (f(O) f ( t )  ) = 2D6(t) -= 2yke T6(t) (1.2) 

The corresponding Fokker-Planck equation reads 

t~ X -g p(  , ~; t) = 2e p (x ,  v; t) 

- - v  + ( C O o X + ~ X ~ ) 8  v 

(1.3) 

y -~vv+kBT-~vz p(x,v;t) 

In the present paper this Fokker-Planck equation will be written in such a 
form as to make the relevant anharmonicity strength c~ to appear. This 
parameter is defined by 

~ = ~ o  kBT (1.4) 

We do not pretend to provide an exhaustive and a fair picture of the 
wide work concerning the challenging field of the nonlinear stochastic 
processes: Certainly we are prevented from doing that by our own cultural 
background and personal bias. Nevertheless to point out that the present 
investigation on the low-friction regime led us to discover a completely 
unexpected physical behavior, we must compare our study with a well- 
defined group of previous papers. These are divided into three categories. 

1.1. Continued Fraction Expansion of the Spectral Density 

The paper of Bixon and Zwanzig (3) is an outstanding example of this 
procedure. They evaluated up to nine frequency moments of the spectral 
density, i.e., used four terms of the continued fraction expansion. A further 
example of a continued fraction expansion is the paper of Matsuo, (a) who 
evaluated up to 56 frequency moments, i.e., about 28 steps of the continued 
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fraction expansion. Although largely enough to get a convergence in the 
high-friction regime, a truncation of the continued fraction at about the 
same order as Matsuo is proven by the results of this paper to lead, in the 
low-friction case, to completely unreliable results. The continued fraction 
procedure (CFP) used in this paper is virtually an improvement of that 
developed by Bixon and Zwanzig. ~ This procedure will be shortly 
reviewed in Section 2, and more details on it can be found in Refs. 12-14. 
By using this computer algorithm we are in a position to evaluate up to 40 
steps of the continued fraction expansion. The major result arrived at in 
this paper via application of the CFP is that the renormalizated oscillator 
frequency changes from (2elf= COo + 2c~ into f2eg= COo + c~ with decreasing 
the friction parameter 7 from 7 >> c~ to 7 ~ ~. It is also shown that the low- 
friction regime (7 < c0 is characterized by a residual linewidth which cannot 
be accounted for by using the CFP (unless a novel very efficient resum- 
marion technique is found). 

1.2. M e a n  Field A p p r o x i m a t i o n  

A major purpose of the wide research work on the Duffing oscillator is 
to find a linear transport equation which leads to the same average values 
as the actual nonlinear microscopic equation of Langevin kind on which 
the proper description of this system should rely. According to Bixon and 
Zwanzig (3~ this linear equation should be restricted to small initial 
deviations from equilibrium. We shall show that this statement must be 
supplemented by the requirement that 

~ 7  (1.5) 

A simple illustration of the linearization procedure is as follows. Let us 
consider the equilibrium correlation function 

qsx(t ) =- (x(O) x(t) ) / ( x  2 ) (1.6) 

from, e.q., (1.3) we obtain 

d 
dt qsx(t)= (x(O) v(t) ) /  ( x  z ) (1.6a) 

d (x(O) v(O> = _~Oo~r ~ (x(O) ~(t)> 
dt (x2) (x~> 

(x(O) x3(t) ) 
fl (x2) (1.6b) 
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We observe that the last term on the right-hand side of Eq. (1.6b) 
generates an infinite hierarchy of equations. The simplest way of truncating 
this hierarchy is to make the mean field assumption: 

(x(0) x3(t)) = 3(x2)  (x(0) x ( t ) )  (1.7) 

The factor of 3 comes out from the fact that in the weak-temperature 
region 

[ ( X ( 0 )  X3( t ) )eq] t=O = ( X  4 )  "~ 3 ( x 2 )  e (l.7a) 

When only the first two steps of the corresponding expansion are used, the 
CFp~12 14) produces the same result. It is therefore correct to state, as Mat- 
suo did, ~81 that the continued fraction expansion method includes the 
method of the statistical linearization. We see indeed that Eq. (1.7a) leads 
to the same renormalized frequency as the method of the "statistical 
linearization", ~6'7"H) From Eqs. (1.5) to (1.7a) we get the renormalized fre- 
quency defined by 

(2at= (co~ + 3fik a T/o92) 1/2 ~ o) 0 + 20~ (1.8) 

which is precisely the same result as that provided by the statistical 
linearization. Further remarks on this issue may be found in Ref. 2. 

The major result of the present paper on this issue is that the mean- 
field approximation leading to Eq. (1.8) fails completely in the low-friction 
regime characterized by 

7<~ (1.9) 

By using a completely analytical theory it will be shown indeed that a 
novel mean-field approximation must be applied leading to (for 7 ~ )  

f2erf = ~Oo + a (1.10) 

1.3. Analog Simulation 

The work of Morton and Corrsin ~ and that of Bulsara et aL (2) are the 
unique analog simulations of the Duffing oscillator known to us. These 
interesting works left unexplored the extremely weak friction region of 
Eq. (1.9). To explore this regime via analog simulation required significant 
technical improvements, which will be illustrated in Section 5. It is worth 
remarking that the role played by analog simulation in this paper is deter- 
minant. The clear indications of the experimental results served the main 
purpose of questioning this seemingly undoubted prediction of the CFP 
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(see the discussion in Fig. 4): In the extremely low-friction regime the dis- 
tribution of the frequencies higher than co o is "quantized" rather than con- 
tinuous. This does not agree with the existence provided via the analog 
experiment, of a residual line width which survives for 7 ~ 0. Thus the 
theory developed in Section 4 has been largely suggested by the analog 
simulation. Note that, although it is relatively straightforward to establish 
an analytical result for the deterministic case 7 = 0 (no stochastic force is 
present), it is not immediately clear whether or not this is really the limit 
for ~ ~ 0 of the actual stochastic system. 

The outline of the present paper is as follows. Section 2 is devoted to 
illustrating the results of the CFP. Section 3 provides an intuitive picture 
for the low-friction regime characterized by 7 ~ cc Section 4 is devoted to 
showing that this regime requires a novel mean-field approximation which 
naturally stems from a representation of the system as a multiplicative 
stochastic oscillator. The "experimental results" obtained via analog 
simulation are described in Section 5, which is also devoted to a com- 
parison between "experiment" and the theoretical predictions. 

2. THE  C O N T I N U E D  F R A C T I O N  P R O C E D U R E  

To make the present paper as self-contained as possible, we shall 
shortly review the CFP of Refs. 12-14. This method relies on the fact that 
the evaluation of a stationary correlation function implies that the system 
reaches a well-defined steady state. The Fokker-Planck equation of 
Eq. (1.3) is proven to have the equilibrium solution of canonical form 

p e q ( X , v ) ~ e x p I _ t ~  fix4 v 2, / ,  ~ (2.1) 

If we define the scalar product between two observables A(x, v) and B(x, v) 
a s  

(A B) =- f A*(x, v) B(x, v) Peq(X,  /)) dxdv (2.2) 

the correlation function 

eba(t ) = (a(O) a(t) )/(a 2) (2.3) 

where a(x, v) is a variable depending on x and v can then be given the 
"quantum mechanical" form 

~~ (fo l fo(t) ) /( fo l fo) (2.4) 

822,'41 3-4~14 
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where 

Ifo) - a(x, v) (2.5) 

[fo) is thought of as the first of a chain of states (the Mori basis set13), 
which is the best expansion basis set of the operator of Eq. (1.3) when aim- 
ing at determining the correlation function q~a(t). This is indeed a 
generalization of the well-known Mori theory (~5) to the case of non-Her- 
mitian operators. (12'~3) 

The chain of the Mori states is built up as follows: 

If1) = - 2 o  I f o ) +  5O I fo )  

(f~l = - ( f o l  20+ (fol 5O+ 

Ifi)  = --~i--I ] f i - ~ ) - - A ~ - i  I f , - 2 ) + 5 o  IL-~) ,  

(J~il = - - '~ i - l (J~/ - l [ - -Z~2 1(J~i-2t + (.7l-11 5O+, 

A 2 - - ( L I f , ) / ( ~  - l l f i - ~ ) ,  

L -  (f,.I 5o IL)/(filfi), 

(2.6) 

(2.6a) 

i =  2,... (2.7) 

i =  2 .. . .  (2.7') 

i =  1,... (2.8) 

i = 0 ,  1,... (2.9) 

Note that 5O + is the Hermitian conjugate of 5 ~ with respect to the scalar 
product defined by Eq. (2.2). The evaluation of the states Lf~) and (~1 via 
an iterative approach leads to the direct determination of the fundamental 
parameters 2~ and A 2 [Eqs. (2.8) and (2.9)]. The iterative evaluation of the 
states If,) ,  in turn, is possible owing to the fact that 5O If~) can be given 
the form 

C,mX V exp -- V(x)+ kBT  
t i m  

(2.10) 

This affords a complete solution of the problem under discussion, 
because the spectrum of the variable a is given by 

fore  q~a(t) dt = Re q3a(ico ) Ia(co ) - Re -i~, (2.11) 

and q3a(ie) ), in turn, can be expressed (~2"13) in the continued fraction form 

1 
~(i~o) = (2.12) 

io9 + 20 -t 

ic~  ico+22+ �9 . 
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By using a computer algorithm we can determine about 40 Mori 
states. The method can be improved via exact resummation over the 
infinite terms of the expansion. Some special cases lead to an exact resum- 
mation of the continued fraction. These are the following. 

2.1. Kubo's  S t o c h a s t i c  Oscillator/16) 

The well-known model of the multiplicative stochastic oscillator of 
Kubo reads 

~+(t) = iq(t) ~+_(t) (2.13) 

where r/(t) is a Gaussian stochastic variable defined by 

(zl~/(O) d~/(t)) = A 2 exp{ --7t} 

J r / = r l -  ( r l )  = ~ - Q  

By following Kubo (16) we get 

(2.14) 

(2.14') 

(2.15) 

j (c~ ( O ) : t + ( t ) ) e - : ' d t =  d 2 0 
z - - i Q q  

2A 2 
z - i D + 7 - t  

z - iQ + 27 -t- - -  

(2.16) 

where 

E ] (c~ (0 ) ~+( t ) )= (c~  c~+)exp - ~ / 2 ( e - ' Z t - l + ~ t ) + i f 2 t  (2.17) 

On the other hand, for 7--,0, (c~ C~+(t))eq of Eq. (2.17) becomes 

r  c~+( t ) )= (~  c t+ )e  ~2'2/2ei~ (2.18) 

The Laplace transform of which is 

1 e(i~_z)2/2zl 2 ~oo (i(2-z)/~ 
~ ( z ) = - ~  - (ia-z)m e x2/2 dx (2.19) 

We therefore conclude that for 7--+0 and f 2 = 0  Eq. (2.19) expresses the 
result of summing the continued fraction of Eq. (2.16) to infinite order. 
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2.2. A O n e - D i m e n s i o n a l  Chain  of  H a r m o n i c  Osci l la tors  (~n 

Let us consider the system described by 

X 0 : D O 

U 0 : -- K ( X  0 - -  X 1 ) 

X 1 : V 1 

V, = K(X O - x  1 ) -  ~C(Xl--X2) (2.20) 

X 2 ~--- U 2 

/)2 = / s  - -  X 2 )  - -  K ( X 2  - -  X 3 )  

It is well known (18) that 

cIOvo(t ) - <VoVo(t) > / < v g )  = Jo(2 ~ t) (2�9 

the Laplace transform of which is 

1 .-R / ~ 
(2�9 uG0tz ~ - (z 2 + 4~c) in 

On the other hand, from Eqs. (2.20) it turns out/~71 that 

1 
~vo(Z)  = 2A 2 (2�9 

z-~ A2 
zq Z~ 2 

zq 
z + ' .  

Equation (2.22) is therefore the exact summation of the infinite continued 
fraction of Eq. (2.23)�9 

2.3. The  Lorents  model  of t u r b u l e n c e  (19) 

Grossmann and Sonnenborg-Schmick (19) have recently studied the 
chaotic properties of the Lorentz model through representative dynamical- 
correlation functions. By using the Mori-Zwanzig projector formalism they 
expressed these correlation function in a continued fraction form. They 
could evaluate up to seven Mori states, which were proven to be far from 
being enough to explain the major features of the Lorentz spectra�9 



Duffing Oscillator in the Low-Friction Limit 561 

However these authors could assess that the Lorentz turbulent regime is 
characterized by the following power law: 

A 2 = i r a  2 (2.24) 

In their case v turned out to be v = 2. We shall refer to this type of con- 
tinued fraction as the Lorentz model of turbulence. (Lg) Note that by summ- 
ing this continued fraction to the infinite order Grossmann and Sonnen- 
berg-Schmick obtained a broad spectrum that satifactorily agrees with the 
experimental one, whereas truncation at the sixth stage resulted in only 
two sharp transitions.t19) 

We note that (21) 

ffb e x p ( - z x )  (2.25) 
sin h(x) 1 

sin h(bx) A~ 
z +  

z-t 

where 

z + A ~ "  . . 

(i2b2 - 1) i2 (2.26) 
3 2 -  4 i 2  1 

When i>> 1 this simulates fairly well the power law of the Lorentz model of 
turbulence. Since in the present paper summation to infinite order will be 
made after actually calculating about 40 Mori states, Eq. (2.25) will 
approximate fairly well the power law of Eq. (2.24). 

The summation to infinite order will be carried out as follows. Let us 
assume that 

1 
= q3o(Z ) - (2.27) 

Z-2o-+ 3~ 
z - 2 1 + - -  

is a function, which can also be given by a fairly simple analytical 
expression. Note that 

Z--  ~i"~ ~) i+ l(Z ) 

Then through iterative application of the inverse relation 

qSi(z) 

(2.28) 

r 

(2.29) 
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we can express a generic ~n(z) in terms of the parameters 
2o, 21,..., Z ,_I ,  ~2, A22 ..... A] 1 and the analytical expression $(z). This 
analytical expression will be provided by one of the afore mentioned cases. 

Figure 1 illustrates a significant result of the CFP procedure applied to 
evaluating the correlation function #x(t) of the Duffing oscillator. This has 
been the subject of a preliminary short report. (22) We see that the nor- 
malized frequency changes from f2e~ = ~Oo + 2c~ at 7 > ~ into (2el f = ~Oo + ~ at 
7 < e. This means that the regime 7 < e is characterized by a complete 
failure of the usual renormalization technique. 

Figure 2 illustrates the spectra Re 6x(iO)) at different values of 7/~. 
Special attention is deserved by the spectrum in the regime 7 < c~, which is 
characterized by two sharp peaks. This is in marked contrast with the 
result of the analog simulation of Section 5, which proves the existence of a 
residual linewidth the size of which is about e. To shed ligtht into this dis- 
agreement we evaluated via the CFP the behavior of the parameters A~ as 
a function of the parameter 7. We noted (see Fig. 3a) that when 7>>c~ these 
parameters undergo a weak fluctuation at low values of the index i. As a 

OJo+ 2~==q~ 

CDo+C~ - 

-1.4 

i 

010 1.4 
LO61o(7/a) 

Fig. I. The maximum of Re C~x(ie) ) [the real part of the Laplace transform of q~x(t) of 
Eq. (1.6)] as a function of the friction parameter 7. The solid line illustrates the result 
obtained by using the CFP of this section, whereas the line denoted by large dots indicates the 
result provided by Eq. (4.27). The discrepancy between the two results at large values of 7 
mainly depends on the fact that there the conditions for the rotating-wave approximation 
behind Eq. (4.6) are not fulfilled. The dashed line denotes ( f 2 ~ -  y2/4)~/2, where f2orr is provided 
by the statistical linearization of Eq. (1.8), and shows therefore that at 7>>c~ this mean-field 
method gives correct results. The parameter c~ used is: c~ = 0.0075. 
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/ ;  
/ 

.4 

z i ,y--..Y 

O A  o_.co_O o a 

/ / ' r  / / 

/ / / 
/ /  / 

/ 

�9 / I  

" " "  3 

Fig. 2. The real part of the Laplace transform of ~x(t), Re qSx(ico), at several values of 
the friction ?. (1) y/c( = 0, (2) y/c( = 1/2, (3) ?/c( ~ 1, (4) ?/:( = 2. The solid line denotes the result 
provided the CFP with 35 Mori states and standard truncation (i.e., without additional sum- 
mation at infinite order). The curves . . . . .  at ? = 0 and . . . . .  at 7 = cc/2 denotes the result 
provided by Eq. (4.20). The curves - - -  at 7 = c( and ? = 2c( denote the result provided by 
Eq. (4.27/. The arrows denote the position of the maximum of the solid lines. The abscissas 
concern Aco ~ co - coo, the origin of which is pointed by 0. The scale of ordinates, concerning 
Re ~,(io~), is expressed in arbitrary units. The parameter ~ used is cc = 0.0075. 

certain threshold i r is reached these parameters  start exhibi t ing a much 

more f luctuating dependence on the index i. This allows us to t runcate  the 
Mori  chain at the ( i r - ) th  order wi thout  affecting the resulting spectrum 

with any significant error. O n  the contrary,  the regime ~ < c~ is characterized 

by a more regular behavior  which makes it difficult tc t runcate  the Mori  

chain at any order�9 Figure 3b clearly shows that  the regular behavior  of the 

region ~ < ~  may be expressed via the power law of Eq. (2.24) with v~_ 2.5. 
Figure 4 illustrates the results of applying different kinds of summa t i on  

at infinite order. It is shown that  all the different methods  virtually lead to 
the same result: a major  peak at co_~ co o + ~ and  a satellite one at abou t  
co ~ coo + 3e. This would suggest the following in terpre ta t ion  picture: Weak 

as it is, the stochastic force f ( t )  cf the Eq. (1.1) is able to establish (via :the 
f luctuat ion-diss ipat ion process) the tempera ture  T. This means  that from 

time to time the Brownian  particle is obliged to leave the bo t tom of the 
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l I ! I I i I ~  q 
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l l i I I If 

II �9 
II 
I 

i 35 
(a) 

I I I I I J i i l a  

 L2/ , i i i i i n u i 

t_OG 

( b )  

Fig. 3. The behavior  of the parameters  A~ as a function of i. In both  cases the value of the 
parameter  a used is c~=0.075. (a) Linear plot point ing out  the change from a fluctuating 
behavior  to a regular one when the region y ~  is reached. Dashed  line, ?, = 10a; solid line, 

= 6e. All the cases with 7 ~< 6c~ virtually coincide with the solid line. The ar rows denote the 
values of the corresponding parameters  A~ out  of scale. (b) The behavior  of the parameters  A,? 
as a function of i illustrated via a bilogarithmic plot. The full line refers to the case ~ = 0. The 
dashed line indicates A 2 = i v with v = 2.5. 
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6Oo§  o,3a 6O 

Fig. 4. Re Cx(io9) as a function of o3. The curve has been obtained by evaluating 35 states of 
the set of Eq. (2.6) to Eq. (2.7'), and making a subsequent summation at infinite order were 
based on the model (2). If this summation were made by using either the model (1) or (3) this 
would provide results indistinguishable in the scale of this figure from that based on the model 
(2). Note that virtually the same result would be obtained by summation over 440 states (the 
first 40 states being rigorously determined via Eqs. (2.6) to (2.7') and the remaining ones via 
an extrapolation method based on Eq. (2.24) with v = 2.5) and subsequent summation at 
infinite order with any one of the models (1) to (3). Ordinates refer to Re q~x(ie)) expressed in 
arbitrary units, c~ = 0.075, I' = 0. 

well and explore regions of higher potential energy. Then, in consequence 
of the anharmonic contribution to the potential V the Brownian particle 
"feels" effective frequencies larger than co o. The results of the CFP would 
imply, on the other hand, that the distribution of these effective frequencies 
is "quantized" rather than continuous, as it should be within the 
framework of the classical mechanics, and the constant of quantization 
would be precisely the anharmonic strength ~ [Eq. (1.4)]. However, both 
analog experiment and theory (see next section) show that these sharp 
transitions, if they exist, are embodied within a broad spectrum. This leads 
us to believe that for this broad spectrum to be reproduced by the CFP it 
may be necessary to make a summation at infinite order closer to the 
power law v-~2.5 which characterizes the extremely low-friction regime. 
Note that the turbulent regime of Lorentz is characterized by the power 
law: v = 2 .  (19) This seems to suggest that the residual linewidth of size c~ at 

= 0 may be the effect of a transition from the standard stochastic regime, 
depending on the influence of infinite irrelevant freedom degrees, to the 
deterministic chaos. This is a sound hypothesis because the system cf 
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Eq. (1.1) can be regarded (18) as being a collection of infinite systems such 
a s  

= - ( c o a x  + / ~ x  2)  - ~ c ' ( x  - y o )  

))0 ~-~ WO 

1~o = - - • ( Y o  - - X ) - / r  - -  Yl  (2.30) 

)1 = W1 

wl = ~(Yo - Yl) - ~c(Yt - Y2) 

with a canonical equilibrium distribution. Each system of the collection is 
characterized by a well-defined energy E which is a constant of the motion. 
If it happened that at a certain critical energy E~ a transition to chaos due 
to the anharmonic term of the Duffing oscillator takes place, 2 then beyond 
this threshold the spectrum of the variables x and v would be determined 
by the deterministic noise rather than depending on the standard fluc- 
tuation-dissipation process caused by the interaction between the Brownian 
particle and the "thermal bath" particles with coordinates Yo, Y J,..., Yi,... 
[simulated in Eq. (1.1) by the friction term -7v ( t )  and the stochastic force 

f ( t ) ] .  Of course the study of the transition to chaos of the system of 
Eq. (2.30) affords evident technical difficulties. We focused therefore our 
attention on 

2=/9 

0 = - -  ( (J . )2X -]- ]~X 3 ) - -  ff22(X - -  YO) 
(2.31) 

y ~ W  0 

= - f 2 2 ( y o -  x). 

If the residual linewidth exibited at 7 < c~ depended on this transition to 
chaos, one would expect that the system of Eq. (2.31) is characterized by a 
critical energy given by 

4 c~ (2.32) 
E c 3 f i  

This prevision is obtained from the mere definition of e of Eq. (1.4) by 
replacing k~ T with E c and 7 with/2 (which in a sense has the same mean- 
ing as 7, i.e., a rate of energy exchange between the system of interest and 
its "thermal bath"). 

a For  a few papers  on the t rans i t ion  to chaos  in the Duff ing oscillator, see Refs. 23a to 23c. 
Closely related to this subject  are also the papers  of Refs. 23d and  23e. 
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We explored values of the energy E up to E -  102Ec without detecting 
any deviation from the standard deterministic behavior. This means that 
the power law with v = 2.5 must be regarded as being nothing but a mere 
sign of strong non-Markoffian behavior preventing us from using the usual 
truncations of the Mori chain. The similarity between this and the Lorentz 
turbulent regime (19) probably only implies that the spectrum of chaotic 
systems with a few freedom degrees shares some common features with 
those non-Markoffian systems the chaotic behavior of which depends on 
the influence of infinite "irrelevant" freedom degrees. 

In the next two sections we shall illustrate the actual physical reason 
behind the residual linewidth characterizing the regime 7 < c~. 

3. A D E T E R M I N I S T I C  M O D E L  FOR THE E X T R E M E L Y  L O W -  
FRICTION REGIME 

For y ~ 0 the trajectories of the Brownian particles are virtually deter- 
ministic. An extremely weak stochastic force from time to time produces 
transitions from a deterministic orbit to another one. When dealing with a 
sample of Brownian particles, these must be regarded as being distributed 
according to a canonical law, each one undergoing a completely deter- 
ministic motion characterized by a well-defined energy E. Owing to the 
nonlinear character of the potential 

V ( x ) ~ _  l 2 2 :cooX + �88 ~ (3.1) 

a finite temperature distribution makes frequencies higher than the har- 
monic one, COo, appear. A particle which undergoes oscillations of 
amplitude A is characterized by the fundamental frequency 

co2=co2 + ~fiA 2, flA2 ~co 2 (3.2) 

This expression is approximated and corresponds to the first step of a fre- 
quency renormalization procedure (24) widely used to solve the equation of 
motion in nonlinear systems. In the case under discussion, either by means 
of numerical integration or using the Jacobian elliptical functions, it would 
be straightforward to reach a better approximation to this frequency. In 
general this depends on the amplitude A of the oscillation and therefore on 
the energy of the particle: 

co = co(E) (3.3) 

E - -  Ir'~2A2 = ~ w O . .  -~- l f l A 4  (3.4) 
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To find the explicit form of the autocorrelation function we will make the 
assumption that the motion of the particle be represented only by its first 
harmonic component: 

x(t) = Xo cos cot + Vo sin e)t (3,5) 
CO 

In order to evaluate (x(0)X(/))eq w e  must average over all the possible 
initial conditions taking into account the weight given by 

1 
p(E, x) e2e e/kBr {2[E-- V(x)]} m (3.6) 

which is obtained from the canonical distribution function by making a 
transformation from the variables x, v to the new ones x and E. We obtain 
therefore 

(x(O)x(t) ) oc 2 f?  dE fA dxoexp ( ~ xgcose)(E)dt  
A - { 2 [ E -  V ( x o ) ] }  1/2 (3.7) 

the Laplace transform of which leads us to expect 

E kBT dE fA x~ dxo 
Ix(co) oc 2e-  / -7 - !  

{2I-E_---V-~-o)] } 1/2 ao) J A 
(3.8) 

where co and E are related to one another through Eq. (3.3), or, in an 
approximated form, Eq. (3.2). The assumption that ~ [defined by 
Eq. (1.4)] is small allows us to evaluate the integral appearing in Eq. (3.8) 
and the normalization factor involved by Eq. (3.6), thereby leading us to 

lx(a~)=~ e e/k v dE " ~--~E (3.9) 

The factor of rt/2 comes from the definition of Eq. (2.11 ). In order to derive 
Eq. (3.8) we made only the assumption of neglecting the third- and higher- 
order harmonics in the solution of the equation of motion. This is certainly 
a valid one in the limit of small c~. The prediction of Eq. (3.8) supplemented 
by Eq. (3.2) will be shown to agree very well with the experimental results 
of Section 5 (see Fig. 7). 

As to the energy diffusion this approach can be extended to the case of 
finite friction parameter 7 by adopting the Stratonovich method C~5) widely 
applied by the La Jolla group. (26) In the next section, however, we shall 



Duffing Oscillator in the Low-Friction Limit 569 

follow a different approach relying on the Fokker-Planck equation of (1.3) 
and the rotating-wave approximation. It is proven that in the limit case of 
small c~ and vanishingly small 7, the result of this deterministic model, 
Eq. (3.9), coincides with Eq. (4.20). 

4. A N O V E L  M E A N  FIELD A P P R O X I M A T I O N  

Let us write the Fokke~Planck  aquation of Eq. (l.3) in terms of the 
new variables 

:~ + =_ v +_ i~OoX (4.1) 

We then obtain 

c~ 
-~p(a+,a_;t)= --ico o a+--3-~a 

ifi ( O a )  )3 
+8~Oo 3 - - +  ( a + - - a  

+2L\a~+ a~ )(~++~ ) 

(4.2) 

Let us consider the first term on the r.h.s, of Eq. (4.2) as being the unper- 
turbed part Lf o of the operator f .  When written in the corresponding 
interaction picture, Eq. (4.2) reads 

~ fi(~+, ~_;  t )=  Lfl(t)fi(~ + , .~_ ; t)  (4.3) 

where 

and 

~l(t)=_e ~~ e~0' (4.4) 

_ iB ~-;--)(~§ + 5  

+ 1 

. + ~  ) 

(4.5) 
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Let us assume 
COo>> AF (4.6) 

where AF is the linewidth of the spectrum of the variables of interest, x and 
v. We are then allowed to replace ~ ( t )  with its time average over the fast 
time oscillations with frequencies _+ 2io~o. We thus obtain 

~ ~5(c~+, c~ ; t ) =  Yl(t) t~(c~+, e_ ; t)  (4.7) 

where 

Note that in this rotating frame of reference the system appears to be 
characterized by the equilibrium distribution 

tS(c~+, c~ )ocexp ~ j  (4.9) 

This implies an assumption of weakly anharmonic interaction. We shall 
show indeed that for 7 ~ 0 the linewidth is dominated by the anharmonic 
strength c~ [Eq. (1.4)]. In such a case the condition of Eq. (4.6) results in 

~ o  (4.10) 

i.e., precisely an assumption of weakly anharmonic interaction. When the 
condition of Eq. (4.10) is fulfilled we are allowed to use this reference 
system, where the variable energy reads 

E = ~ + a  /2 (4.11) 

It is now convenient to make a new change of variables. We replace 
cr and :~ with ~+ and E. This is equivalent to replacing Eqs. (4.7) and 
(4.8) with 

o-~ P(~+' E; t) 

=- I- i3  fl--~o (~--~+ e+ ) E+TksT(~-~+ c~+ ) 9~- #E 
7 0 (~E+k.T~E~)J~(c~+,E;t) (4.12) 
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Note that the last change of variables is especially suitable when exploring 
the region where 

7,~c~ (4.13) 

We see indeed from Eq. (4.12) that the frequency of oscillation of the 
variable c~+ is precisely e (note that ( E ) =  ks T), whereas the variable E 
decays with the rate 1/7. When the condition of Eq. (4.13) is fulfilled, the 
variable c~+ must be considered as being much faster than E. Since the 
derivative 0/&~+ always appears on the left side, contraction over the 
variable c~+ cancels all the terms on the right-handside of Eq. (4.12) but the 
last one. We thus obtain the energy diffusion equation 

0 / 0  T o 0 )  (4.14) 

which is characterized by the equilibrium distribution 

O-eq(E ) oc exp( - Elks T) (4.15) 

We note also that the motion of E does not depend on the variable 7+. 
The time evolution of c~ +, on the contrary, is deeply dependent on E. From 
Eq. (4.12) we indeed obtain 

3 fiE ~/ 
ci+ ( t )=  i - - - 4  COo 3 c~+ ( t ) - ~  c~+ (t) (4.16) 

From Eq. (4.16) we get 

E( c~_(0)c~+(t)=2exp t ~ f l E - ~  t E (4.17) 

To determine the correlation function (c~ (0)c~+(0)) we must make an 
average over the equilibrium distribution of Eq. (4.15). This leads to 

( c ~  c~+(t)) = 2kTe -(~/2~' 
1 

(4.18) 
(1 -- iTt) 2 

It is also evident that 

(c,+(o) ~+( t ) )  = o (4.183 
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We must now come back to the laboratory system. It can be shown 
that [we use Eq. (4.18')] 

Re 
(x(O) x ( t ) )  = g-----~ ( a  (0) c~+(t)) e '~~ (4.19) 

zco6 

This leads to the spectrum 

f_ ~ k B T  [(1 - c~2t 2) cos (no t - 2t~ sin COot ] 
Ix(CO) Re COg (1 "}- R212)2 e-(~/2)'e . . . .  dt 

(4.20) 

Equation (4.18) shows that the correlation function ( ~ _ ( 0 ) e + ( t ) )  
changes sign at t = 1/a thereby implying the presence of the frequency c~ 
into Ix(CO). Note that this oscillation frequency could be arrived at by 
replacing the factor of 3 of Eq. (1.7) with 3/2. This would be disconcerting 
without the analysis of the present section, which leads indeed to a com- 
pletely novel mean field approximation. In other words, in the weak fric- 
tion regime it is still possible to replace the real anharmonic oscillator with 
an effective "linear" one provided that Kubo's picture of stochastic 
oscillator ~16) is used, i.e., 

d 
dt c~ + (t)  = - i t l ( t )  a + (t)  (4.21) 

where the stochastic frequency r/(t) is characterized by 

(4.22) 

The variance of ~/ can be evaluated by remarking that t/ can be identified 
with the variable energy E. Thus we have 

( ( r / -  a) 2 ) = ~2 (4.23) 

Kubo's equations (16) can then be suitably adapted to deal with this case, 
thereby providing (Aco = co - COo) 

E "~ I(co) = exp a2 (4.24) 

which is certainly worse than Eq. (4.20), since Kubo's formula ~ rests on 
the assumption that ~ is a Gaussian variable and loses therefore the asym- 
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metric character of Eq. (4.20), character which is corroborated by the 
experimental results of the next section. However, this is to remark that the 
residual linewidth for 7 ~ 0 is no doubt the same kind of phenomenon as 
that behind Kubo's stochastic oscillator in the highly non-Markovian 
regime. 

Equation (4.12) can also be used to provide results which are not con- 
fined to the case 7 ~ c~. If we define 

cb.(t)- (~ E"~+(t)) 

from Eq. (4.12) we obtain 

(1) 
~'~r ~ n + ~  ~ , + l + T n ( n + l ) r  i 

(4.25) 

(4.26) 

By using the iterative procedure illustrated in Ref. 29 we get 

S0(z) = Fo(z)((e ) + Fl(z) a~( (e 2 ) + P2(z) a~((~3) _~ x~3(Z)  a~( (e 4 ) �9 �9 "))) 

(4.27) 

where 

1 
P o ( Z )  - 1 0 

z - 2o a~ (4.27') 
2 2 

ala2 
Z - - 2 1 - - - -  

z - - 2  2 

1 
/~'1 ( Z )  - -  (4.27") 

Z - - 2  1 
Z - -  2 2 - -  a 3 a  3 

n - -  n +  1 - -  i ~ ,  2 n - -  -7(n + 1/2) a n d  and so on. Note that a n l~Tn(n + 1), a n 
a-E/kT. The last definition leads to (e n) = n ( a  n 1), ( a ) =  1. 

This expression can be applied to studying the region 7 >> c~ where it is 
proven to predict the maximum of Ix(co ) at co =coo+ 2~. Of course the 
plateau at 7>>c~ predicted by Eq. (4.27) (see Fig. 1) depends on the fact 
that this equation relies on the rotating-wave approximation and therefore 
should be compared with the result provided by the CEP in the limit 
co0  --~ O0. 

Before closing this section, we would like to stress a remarkable result 
provided by the theory here developed. The regime where statistical 
linearization applies is mainly dominated by the influence of the standard 

822/'41/3 4-15 
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fluctuation-dissipation processes related with the terms - 7 v  and f(t) of 
Eq. (1.1). On the contrary at 7~~  the system enters a new regime with a 
line shape very close to that of the purely deterministic case ~ = 0 (see 
Figs. 1 and 2). As a major result of this paper, it is therefore shown that the 
deterministic character of the system is dominant throughout the whole 
interval 0 ~< 7 ~ ~. 

5. ANALOG S IMULATION AND C O M P A R I S O N  BETWEEN 
THEORY AND EXPERIMENT 

The experimental apparatus is basically a development of that used in 
Ref. 27. Furthermore, more details can be found in a separate paper./28) 
For  the sake of clarity we shall limit ourselves to illustrating the 
"experimental" apparatus via the scheme of Fig. 5. 

The Duffing equation 

= - ~  - ~ x - / ~ x  3 (5 .1 )  

was simulated using two integrators coupled with two multipliers. The 
voltage Vo (Fig. 5) was kept fixed so as to get the linear term ~o2X at the 
end of the second multiplier. The damping 7 was changed by means of a 
resistance of feedback in the first integrator. 

To determine the spectrum of the variable x a Gaussian white noise 
was applied to the input of the analog device. The x output was sent to a 
computer so as to evaluate the power spectrum. 

m 

v z 

g e n e r a t o r  

c o m p u t e r  

Fig. 5. Scheme of the experimental apparatus. 
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The extremly low-friction regime that we are exploring in this paper 
involves some technical difficulties: 

(a) The low values of 7 are obtained from high values of the feedback 
resistance of the electric device. 

(b) In this case the electric circuit is particularly sensible to the inter- 
nal noise because the amplitude of the noise applied was reduced so as to 
keep (x2)eq fixed. 

(c) The largely inertial character of the system obliges us to make 
averages over extremely long intervals of time. This in turn enhances the 
drift resulting from the thermal variations of the electric components. 

The limitations (a) and (b) were bypassed by choosing the parameter 
sufficiently large, though still small compared to ~o o (In the case explored 

in this section we used ~ = 0.06709o). The thermal drift (c) was avoided by 
making the measurements after waiting the time necessary for the electric 
components to reach their stationary values. Of course, the cautions we 
used are not sufficient for the results of the measurements to be totally 
reproducible, and little fluctuations still haunt the spectrum. 

In Fig. 6 we show this spectrum at several values of 7. The transition 

coo+a l T 

l 
u ' , / ~  
, 

" F',/i \ z 

,'j\ \ 

f 

. . . . . .  ! - i-} 7 ~---~. . . . .  

�9 i 0 3 0  . , " 2 
09(10 rad/sec ) 

Fig. 6. The free relaxation spectrum of the variable x at different values of the friction 7. The 
curves 1, 2, and 3 concern 7=0.011C9o, y=0.04~%, ~,=0.182~o0, respectively. The arrows 
denote the positions of the frequency 090 + c~, where ~o = 11 600 rad/sec and ~ = 0.067~ 0. 
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from the regime where Eq. (1.8) holds to that where we must apply 
Eq. (1.10) is clearly shown by this figure. 

In Fig. 7 we compare the theoretical predictions on 7 ~7 with the 
result of analog simulation. The good agreement between theory and 
experiment corrohorates our statement that (at about 7 ~ )  a transition 
takes place from the region where statistical linearization holds to another 
regime which requires the novel mean field approximation illustrated in 
Section 5 (which is proven by Fig. 7 to predict the position of the peak 
with satisfactory precision). 

We must also conclude that the appearance of sharp peaks at 7 < ~ is 
an artifact of the CFP which should be still more marked when less effec- 
tive computer algorithms are used. Thus analog simulation played a 
decisive role in leading us to reach the correct view, according to which the 
sharp satellite peak appearing at o9 = 090 + 3~ is the sign of an asymmetric 
broadband, peaked at ~o=COo+a. Note that the distance between the 
major peak and the satellite one is 2~, which is precisely of the same order 
of magnitude as the residual broadening. 

A previous case of investigation on the extremely low-friction limit is 
that of Risken. (29) His work concerns the case of a cosine potential. 

.5 

i 

CO (Do tOo+ t~ 

Fig. 7. The spectrum of the free relaxation of the variable x in the extremely low-friction 
regime. The solid lines describe the spectrum of Eq. (4.20). The dashed line describes the 
deterministic spectrum of Eq. (3.8) supplemented by Eq. (3.2). The result of analog simulation 
is given by the large full line. The parameters used are e=0.067coo, 7=0.0108co o, and 
~o o = 11 600 rad/sec. The arrows denote the frequencies co o and coo + c~. 
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However, in the low-temperature limit this is not distinguishable from the 
model of Eq. (1.1) with /~ < 0. When this is taken into due account, his 
analytical result is proven to coincide with that of Eq. (4.20), thereby com- 
pletely corroborating our point of view. Ref. 31 shows furthermore how to 
extend the approach of the present paper to the case of Josephson junction 
potential. 

6. C O N C L U D I N G  R E M A R K S  

The major results of this paper are the following. 

(i) The CFP of Ref. 14 which is basically founded on the Zwan- 
zing-Mori projection method and therefore closely related to the Bixon- 
Zwanzing method ~3) is virtually reliable over the whole friction interval, if 
our attention is focused on the maximum of the spectrum. This paper 
shows that the CFP allows us to discover the transition from the region 
where (in the low-temperature approximation) this maximum is placed at 
~o = ~o 0 + 2~, to the new one where it appears at ~0 = O~o + ~. This also 
establishes a lower bound to the techniques of statistical linearization, 
placed at about 7 ~ .  In this region, left unexplored by the previous 
investigations based on the continued fraction method, i.e., Refs. 3 and 8, 
the CFP provides wrong information on the detailed shape of the spec- 
trum, although the position of its center of gravity remains correct. A 
problem left not completely solved by this paper is whether or not a proper 
summation at infinite order exists which allows the CFP to provide a more 
reliable linewidth. 

(ii) The transition from (AC0)max----2~ to (A~)max = ~ is completely 
corroborated by the result of analog simulation (see Fig. 7). 

(iii) A new theory is established, based on the rotating-wave 
approximation, which is correct (as far as both the line shape and 
maximum are concerned) throughout the whole friction range. This theory 
shows that an interpretation in terms of an equivalent "linear" oscillator is 
still possible, provided that this oscillator is given the form of a Kubo 
stochastic oscillator. ~16) The discrepancies between this theory and the 
results of the analog simulation must principally be ascribed to the fact 
that for technical reasons the analog experiment cannot explore those 
regions where the errors coming from the rotating-wave approximation are 
really negligible (~ cannot be made much smaller than ~Oo). To corroborate 
this statement, let us consider Fig. 7. The discrepancy between the result of 
Eq. (3.8) and that of Eq. (4.20) depends, in part, on the fact that the for- 
mer one applies to the case 7 = 0, whereas the latter concerns 7 -  0.1~. This 
remark applies especially to the low-frequency side. However, 7 is not large 
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enough as to account for the disagreement between Eq. (3.8) and 
Eq. (4.20) in the high-frequency side, which has to be ascribed therefore to 
the rotating-wave approximation. Thus by inspection of Fig. 7 we see that 
the rotating-wave approximation is largely responsible for the discrepancy 
between the theory of Section 4 and the experimental results. 
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